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Verification, analytical validation, and clinical validation (V3):
the foundation of determining fit-for-purpose for Biometric
Monitoring Technologies (BioMeTs)
Jennifer C. Goldsack1, Andrea Coravos 1,2,3, Jessie P. Bakker1,4, Brinnae Bent5, Ariel V. Dowling 6, Cheryl Fitzer-Attas7,
Alan Godfrey 8, Job G. Godino9, Ninad Gujar 10,11, Elena Izmailova1,12, Christine Manta1,2, Barry Peterson13,
Benjamin Vandendriessche 14,15, William A. Wood16, Ke Will Wang5 and Jessilyn Dunn 5,17✉

Digital medicine is an interdisciplinary field, drawing together stakeholders with expertize in engineering, manufacturing, clinical
science, data science, biostatistics, regulatory science, ethics, patient advocacy, and healthcare policy, to name a few. Although this
diversity is undoubtedly valuable, it can lead to confusion regarding terminology and best practices. There are many instances, as
we detail in this paper, where a single term is used by different groups to mean different things, as well as cases where multiple
terms are used to describe essentially the same concept. Our intent is to clarify core terminology and best practices for the
evaluation of Biometric Monitoring Technologies (BioMeTs), without unnecessarily introducing new terms. We focus on the
evaluation of BioMeTs as fit-for-purpose for use in clinical trials. However, our intent is for this framework to be instructional to all
users of digital measurement tools, regardless of setting or intended use. We propose and describe a three-component framework
intended to provide a foundational evaluation framework for BioMeTs. This framework includes (1) verification, (2) analytical
validation, and (3) clinical validation. We aim for this common vocabulary to enable more effective communication and
collaboration, generate a common and meaningful evidence base for BioMeTs, and improve the accessibility of the digital
medicine field.
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INTRODUCTION
Digital medicine describes a field concerned with the use of
technologies as tools for measurement and intervention in the
service of human health. Digital medicine products are driven by

high-quality hardware, firmware, and software that support the
practice of medicine broadly, including treatment, intervention,
and disease prevention, as well as health monitoring and
promotion for individuals and across populations1.

Box 1: Key takeaways

1. The term “clinically validated” is often found in marketing literature for digital medicine tools but, currently, its meaning is not clear. A standardized framework is
needed to bring meaning to this term.

2. Biometric Monitoring Technologies (BioMeTs) are connected digital medicine tools that process data captured by mobile sensors using algorithms to generate
measures of behavioral and/or physiological function.

3. The rapid rise in the demand for and development of digital medicine products, and specifically BioMeTs, to support the practice of medicine has left in its wake a
body of new technologies with no systematic, evidence-based evaluation framework.

4. BioMeTs should be characterized by a body of evidence to support their quality, safety, and efficacy. Users of these technologies should recognize that verification
and validation processes are critical to support a technology as fit-for-purpose. Without a supporting body of evidence, data can be misinterpreted. In the context of
clinical trials, this can result in misleading study conclusions and possibly patient harm.

5. The evaluation framework for BioMeTs should encompass both the product’s components (e.g., hardware, firmware, and software, including algorithms) and the
intended use of the product. Existing frameworks for new biotechnologies are not sufficiently adaptable, but they can provide meaningful insight for developing new
evaluation frameworks for BioMeTs.

6. We propose and describe a three-component framework intended to provide a foundational evaluation of BioMeTs. This framework includes (1) verification, (2)
analytical validation, and (3) clinical validation.

7. V3 are foundational to determine whether a digital medicine tool is fit-for-purpose. An evaluation of the usefulness and utility is only applicable after gaining evidence
and assurance that the underlying data and predictions are “valid” to answer a given question.

8. Adopting streamlined methods for transparent reporting of V3 processes, coupled with transparency, will overcome “black box” technology development and
evaluation approaches, ensuring that BioMeTs are used appropriately with the robust capture of data.
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Isolated silos of knowledge exist within the engineering,
technology, data science, regulatory, and clinical communities
that are critical to the development and appropriate deployment
of digital medicine products. Currently, terminology, approaches,
and evidentiary standards are not aligned across these commu-
nities, slowing the advancement of digital medicine for improved
health, healthcare, and health economics. Consensus approaches
are needed to evaluate the quality of digital medicine products,
including their clinical utility, cybersecurity risks, user experience,
and data rights and governance for ‘digital specimen’ collection2.
In this work, we refer to a specific type of digital medicine

product that we call Biometric Monitoring Technologies, or
BioMeTs. BioMeTs are connected digital medicine products that
process data captured by mobile sensors using algorithms to
generate measures of behavioral and/or physiological function.
This includes novel measures and indices of characteristics for
which we may not yet understand the underlying biological
processes. BioMeTs, like other digital medicine products, should
be characterized by a body of evidence to support their quality,
safety, and effectiveness3. However, the rapid rise in the
development of and demand for BioMeTs to support the practice
of medicine has left in its wake a knowledge gap regarding how to
develop and evaluate this body of evidence systematically4. If not
addressed, there is potential for misinterpretation of data resulting
in misleading clinical trials and possibly patient harm.
What are the necessary steps to determine whether a metric

derived from a BioMeT is trustworthy, and by extension, whether
that BioMeT is fit-for-purpose? We begin by exploring and
adapting applicable concepts from other standards in related
fields. Digital medicine is an interdisciplinary and rapidly evolving
field. The Biomarkers, EndpointS, and other Tools (B.E.S.T) frame-
work emphasizes that “effective, unambiguous communication is
essential for efficient translation of promising scientific discoveries
into approved medical products”5. Siloed and non-standardized
practices will slow down innovation and impede collaboration
across domains.
In this manuscript, we develop an evaluation framework for

BioMeTs intended for healthcare applications. This framework
includes verification, analytical validation, and clinical validation
(V3). We propose definitions intended to bridge disciplinary
divides and describe how these processes provide foundational
evidence demonstrating the quality and clinical utility of BioMeTs
as digital medicine products.

LANGUAGE MATTERS AND SHOULD BE USED INTENTIONALLY
Establishing a common language to describe evaluation standards
for BioMeTs is critical to streamline trustworthy product develop-
ment and regulatory oversight. In this paper, we avoid using the
term “device” because we anticipate that there is a potential
regulatory context for the V3 framework. We want to avoid
confounding the V3 terminology with existing FDA Terms of Art
(e.g., “device”). Instead, we intentionally discuss digital medicine
products, and specifically BioMeTs. We refer the reader to Coravos
et al for more background on regulatory considerations3. In
addition, in this manuscript we use the term “algorithm” to
describe a range of data manipulation processes embedded in
firmware and software, including but not limited to signal
processing, data compression and decompression, artificial
intelligence, and machine learning.
We also avoid using the term “feasibility study.” These studies

can be purposed to evaluate the feasibility of a number of
performance questions and so “feasibility study” in isolation is a
meaningless term. We use the term “gold standard” in quotations
because it often refers to entrenched and commonly used
measurement standards that are considered sub-optimal. “Gold
standards” should be considered as nothing more than the best

available measurement per consensus, against which the accuracy
of other measurements of similar purposes may be judged6.
In this paper, we use the term “data supply chain” to describe

data flow and data provenance for information generated from
hardware, sensors, software, and algorithms.

WHY V3?
Two terms, verification and validation, have been used for
decades to describe critical components of successful quality
management systems. The ISO 9000 family of quality manage-
ment system standards, first published in 1987, have specific
standards and definitions related to design verification and
validation7. These ISO 9000 standards are generic and can be
applied to any type of organization; as such, many industries have
adapted these standards to their specific needs. For example, ISO
13485 specifies quality management system requirements related
to design verification and validation for organizations that provide
medical devices and related services8.
In the most basic sense, a BioMeT combines software and

hardware for medical or health applications. The software,
hardware, and regulatory parent industries have long histories
of verification and validation as part of their quality management
systems. Software and hardware verification and validation are
guided by the IEEE Standard for System, Software, and Hardware
Verification and Validation (IEEE 1012-2016), which lays out
specific requirements that must be met in order to comply with
the standard9. The FDA also describes verification and validation
processes required for software and hardware products that are
submitted for their approval10,11.
Traditional validation for software and hardware products

confirms that the end product accurately measures what it claims
to measure. However, BioMeT-derived measures from digital tools
must also be clinically useful to a defined population. As such, we
have split validation into analytical validation and clinical
validation, similar to the framework used in the development of
wet biomarkers and described in the BEST (Biomarkers, EndpointS,
and other Tools) resource developed by the FDA-NIH Biomarkers
working group5.
The three-component V3 framework is novel and intentionally

combines well established practices from both software and
clinical development. The definitions for V3 were derived from
guidance documents, historical, and current frameworks ranging
from 2002 to 2018. Each document referenced focuses on the
particular audience for its associated organization(s), including
system developers and suppliers, pharmaceutical industry spon-
sors, and regulators (Table 1). The context of the definitions
provided for V3 vary greatly, highlighting that language and
processes are often generated and used within disciplinary silos.
Although some commonalities exist, the comparisons are confus-
ing at best (Supplementary Table 1). These communities also lack
a standard language to describe the data supply chain for
information generated from the hardware, sensors, software, and
algorithms.
Given (1) the historical context for the terms verification and

validation in software and hardware standards, regulations, and
guidances, and (2) the separated concepts of analytical and
clinical validation in wet biomarkers development, this
paper seeks to adapt existing terminology and evaluation
frameworks for use in BioMeTs. In this new era of digital medicine,
we suggest a broad interdisciplinary approach and a common
lexicon containing consensus definitions across disciplines for
these important terms.
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MOVING FROM CURRENT SILOED PRACTICES TO ONE
UNIVERSAL BEST PRACTICE
Evaluation of BioMeTs should be a multi-step process that
includes relevant expertize at each stage, as well as interdisci-
plinary collaboration throughout. We propose V3, a three-
component framework for the evaluation of BioMeTs in digital
medicine (Fig. 1):

1. Verification of BioMeTs entails a systematic evaluation by
hardware manufacturers. At this step, sample-level sensor
outputs are evaluated. This stage occurs computationally in
silico and at the bench in vitro.

2. Analytical validation occurs at the intersection of engineer-
ing and clinical expertize. This step translates the evaluation
procedure for BioMeTs from the bench to in vivo. Data
processing algorithms that convert sample-level sensor
measurements into physiological metrics are evaluated.
This step is usually performed by the entity that created the
algorithm, either the vendor or the clinical trial sponsor.

3. Clinical validation is typically performed by a clinical trial
sponsor to facilitate the development of a new medical
product12. The goal of clinical validation is to demonstrate
that the BioMeT acceptably identifies, measures, or predicts
the clinical, biological, physical, functional state, or experi-
ence in the defined context of use (which includes the
definition of the population). This step is generally
performed on cohorts of patients with and without the
phenotype of interest.

V3 must be conducted as part of a comprehensive BioMeT
evaluation. However, although V3 processes are foundational, they
are not the only evaluation steps. The concept we propose here is
analogous to FDA’s Bioanalytical Method Validation Guidance for
Industry13, which captures key elements necessary for successful
validation of pharmacokinetic and wet laboratory biomarkers in
the context of drug development clinical trials though there are
some fundamental differences due to the nature of data collection
tools and methods.
Clinical utility, which evaluates whether using the BioMeT will

lead to improved health outcomes or provide useful information
about diagnosis, treatment, management, or prevention of a
disease is also necessary to determine fit-for-purpose5. To evaluate
the clinical utility of a digital tool, the range of potential benefits
and risks to individuals and populations must be considered,
along with the relevance and usefulness of the digital product to

individuals (e.g., adherence to using the technology, user
experience, and battery life). Clinical utility is typically evaluated
by a process of usability and user experience testing. A BioMeT
may perform well under V3, but is useless if it cannot be used
appropriately by the target population in the anticipated setting.
However, usability, and user experience are outside of the scope
of the proposed V3 framework. Other criteria, such as cost,
accessibility, compatibility, burden and ease of use, failure rates,
and manufacturers’ terms of use and or customer service, are also
critical to determining fit-for-purpose. These are described in more
detail by the Clinical Trials Transformation Initiative (CTTI)14.

HOW DOES V3 FOR BIOMETS FIT WITHIN THE CURRENT
REGULATORY LANDSCAPE?
In the United States, regulators evaluate the claim(s) a manufac-
turer makes for a product, rather than the product’s capabilities. In
other words, a product may be categorized as a regulated “device”
or “non-device” purely through a change in the manufacturer’s
description of the product with no change to its functionality (e.g.,
no change to the hardware, firmware, or software).
The setting in which a BioMeT is used can also shift the

regulatory framework. For instance, a wearable used in a clinical
trial to support a drug application (e.g., to digitally collect an
endpoint like heart rate) would not necessarily be considered a
“device”. However, the exact same product sold in the post-market
setting claiming to diagnose a condition like atrial fibrillation,
would be a device under the current paradigm.
Recognizing recent shifts in the technology landscape, the US

Congress signed the 21st Century Cures Act (Cures Act)15 into law
on 13 December 2016, which amended the definition of “device”
in the Food, Drug and Cosmetic Act to include software-based
products. As a result, the FDA has been generating new guidance
documents, updating policies, and considering better approaches
to regulate software-driven products16. One novel approach has
been to decouple the system into separate hardware and software
components. For instance, the International Medical Device
Regulators Forum defined ‘Software as a Medical Device (SaMD)’
as a software that performs independently of medical device
hardware and that is intended to be used for medical purposes17.
Importantly, this regulatory construct means that software
(including algorithms), which lack a hardware component can
be considered a “device” and thus, regulated by the FDA. For
example, in 2018 two mobile applications that use either
electrocardiogram (ECG) or photoplethymography data to

Fig. 1 The stages of V3 for a BioMeT: Verification, analytical validation, and clinical validation of BioMeTs is a multi-step process. The
stages of V3 for a BioMeT.
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generate “Irregular Rhythm Notifications” were granted De Novo
clearance by the FDA18,19.

VERIFICATION
The verification process evaluates the capture and transference of
a sensor-generated signal into collected data. Verification
demonstrates that a sensor technology meets a set of design
specifications, ensuring that (A) the sensors it contains are
capturing analog data appropriately, and (B) the firmware that
modifies the captured data are generating appropriate output
data. In lay terms, the process of verification protects against the
risk of ‘garbage in, garbage out’ when making digital measure-
ments of behavioral or physiologic functions. BioMeTs include
sensors that sample a physical construct; for example, accelera-
tion, voltage, capacitance, or light. Verification is a bench
evaluation that demonstrates that sensor technologies are
capturing data with a minimum defined accuracy and precision
when compared against a ground-truth reference standard,
consistently over time (intra-sensor comparison) and uniformly
across multiple sensors (inter-sensor comparison). The choice of
reference standard depends on the physical construct captured.
For example, verification of an accelerometer would involve
placing the sensor on a shaking bench with known acceleration,
and using these data to calculate accuracy, precision, consistency,
and uniformity. In all of these processes, the evaluation criteria
and thresholds should be defined prior to initiating the evaluation
tests in order to determine whether the pre-specified acceptance
criteria have been met.

THE DATA SUPPLY CHAIN
All digital measurements reported by BioMeTs are derived
through a data supply chain, which includes hardware, firmware,
and software components. For example, the accelerometer is a

basic micro-electro-mechanical system frequently found in
BioMeTs. Mechanical motion of a damped mass or cantilever in
the accelerometer generates physical displacement information
that can be translated through a series of data manipulations into
a daily step count metric (Fig. 2; Supplementary Table 2). Each of
these steps along the data supply chain has to be verified before
the resulting measurement can be validated in a given population
under specified conditions.
The term “raw data” is often used to describe data existing in an

early stage of the data supply chain. Because the data supply
chains vary across BioMeTs, the definition of “raw” is often
inconsistent across different technologies. Here, we define the
term sample-level data as a construct that holds clear and
consistent meaning across all BioMeTs. All sensors output data at
the sample level (for example, a 50 Hz accelerometer signal or a
250 Hz ECG signal); these data are sometimes accessible to all
users and sometimes only accessible to the sensor manufacturers.
We refer to this sensor output data as d and that data are reported
in the International System of Units (SI). Although signal
processing methods may have been applied to this data (e.g.,
downsampling, filtering, interpolation, smoothing, etc.), the data
are still considered “raw” because it is a direct representation of
the original analog signal produced by the sensor. These are the
data that must undergo verification. Unfortunately, this sample-
level data are often inaccessible to third parties using those
technologies. This may be owing to limitations on storage space
or battery life during transmission of high frequency data or it may
be due to the risk of a third party reverse-engineering proprietary
algorithms developed by the BioMeT manufacturer. In these
situations, only the BioMeT manufacturer can complete verifica-
tion of the sample-level data.
In summary, verification occurs at the bench prior to validation

of the BioMeT in human subjects. Verified sample-level data
generated from the sensor technology becomes the input data for
algorithms that process that data into physiologically meaningful

Fig. 2 The “Raw” data dilemma: defining sample-level data in the data supply chain in a uniaxial MEMS accelerometer. Acceleration
results in physical motion of the equivalence of a spring and proof mass, which in turn results in changes of electrical properties that can be
captured by electrical property sensors. Electrical signals are then converted from analog to digital signals and stored and transmitted via the
microprocessor on a wristband or mobile device. Through BLE, data are then processed and compressed multiple times for transmission and
storage through mobile devices or cloud storage. This figure summarizes the steps of data collection and manipulation into a daily step count
metric and illustrates that “raw” data could refer to different stages of the data collection and manipulation process and have different
meanings. For more details of the data types and technologies involved in each step, please refer to Supplementary Table 2. Here, two arrows
are highlighted with asterisks, which signify steps in the data supply chain where the “raw data dilemma” usually occurs. What is defined and
clarified as “sample-level data” are the primary and processed digital signals marked by asterisks.
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metrics (described further in analytical validation, below). There-
fore, verification serves as a critical quality control step in the data
supply chain to ensure that the sample-level data meet pre-
specified acceptance criteria before the data are used further.
Table 2 summarizes the process of verification.

HOW CAN WE RECONCILE THE PROCESS OF VERIFYING
SENSOR TECHNOLOGIES IN DIGITAL MEDICINE WITH
APPROACHES MORE FAMILIAR TO OTHER DISCIPLINES?
In both engineering and medicine, the goal of verification is to
document that a specific device performs to intended specifica-
tions, but the details of the process vary with the sensor
technology20. Verification itself is not defined by a fixed standard
applied across all tools—rather, it is a declaration of performance
with respect to a pre-specified performance goal. That perfor-
mance goal is usually established by the manufacturer based on
the intended use of the technology or by community standards
for more common technologies, and can be precisely defined in
terms that are easily testable. For example, an accelerometer’s
intended performance circumstances may include the range of
accelerations for which the accuracy exceeds 95% as well as the
environmental and contextual conditions (e.g., temperature,
humidity, battery level) for which the technology’s performance
remains within that accuracy threshold. BioMeT community
verification standards are typically covered by the IEC 60601 series
of technical standards for the safety and essential performance of
medical electrical equipment21. The series consists of collateral
(IEC 60601-1-X) and particular (IEC 60601-2-X) standards. The latter
define verification requirements for specific sensor signals. For
instance, IEC 60601-2-26 specifies verification requirements for
amplifier and signal quality properties for electroencephalography
(EEG) sensors. IEC 60601-2-40 specifies similar criteria for
electromyography sensors, IEC 60601-2-25 for ECG sensors, and
IEC 60601-2-47 even focuses on requirements for ambulatory ECG
sensors. Beyond these biopotential signals, specific standards do
not exist for other commonly used sensor signals in BioMeTs (e.g.,
inertial, bioimpedance, and optical), leaving the definition of the
verification criteria up to the manufacturer and regulatory
authorities.
One challenge with establishing standard performance metrics

is that performance requirements can vary by use case, and
therefore the same technology performance may be sufficient for
one scenario but not for another. For example, heart rate accuracy
is critical for detection of atrial fibrillation in high-risk patients, but
is less critical for longitudinal resting heart rate monitoring in
healthy young athletes. The verification process, therefore, must
include the intended use for designating appropriate thresholding
criteria.
Verification serves as the initial step in a process in which data

collected from further studies using the sensor technology are
used to continue development of rational standards for use,
uncover any unexpected sources of error, and optimize perfor-
mance of BioMeTs.

WHO IS RESPONSIBLE FOR VERIFICATION?
Verification of BioMeTs is generally performed by the manufac-
turer through bench-top testing. Verification tests require access
to the individual hardware components and the firmware used to
process the sample-level data, both of which may be proprietary;
as such, in some cases it may be impractical to expect anyone
other than the technology manufacturer to complete verification.
Indeed, many clinical investigators utilizing the technology will
not have the resources or expertize required to perform such
evaluations. However, it is likely the clinical investigators who will
need to define the parameters of verification that would allow a
determination of whether the sensor is, indeed, fit for a particular
purpose.
Technology manufacturers should provide researchers and

clinical users of their tools with timely and detailed verification
documentation that is easily understandable to non-technologists.
This documentation should be similar to the data sheets provided
for hardware components, such as individual sensors that
comprise the BioMeT. The documentation of BioMeTs should
include three sections: performance specifications for the
integrated hardware, output data specifications, and software
system tests.
Performance specifications for the integrated hardware will

mimic the performance specifications for individual hardware
components but the testing must be completed on the full
hardware system in situ. As an example, take a simple step
counting BioMeT consisting of an accelerometer sensor and
associated hardware to display the current daily step count on a
small screen. Verification tests for integrated hardware perfor-
mance specifications could include power management (expected
battery life under a variety of conditions), fatigue testing
(expected lifespan of the hardware under typical and extreme
use), and/or electrical conductance (expected electrical current
through the BioMeT).
Output data specifications should describe the accuracy of the

sample-level data produced by the BioMeT’s sensors that will be
used as input to the processing algorithms to produce the
processed data. These verification tests usually consist of bench-
top tests. These tests are necessary even if sample-level data are
passed directly to the algorithms because, at a minimum, an
analog to digital conversion of the sensor data may occur within
the BioMeT. In the previous example of a simple step counting
BioMeT, there is only one algorithm output metric: step counts.
The sample-level data that are used as an input into that algorithm
are the measurements that come from the on-board acceler-
ometer as measured in SI units. The output data specifications
should detail the accuracy of the accelerometer data in each axis
(e.g., ± 0.02 g) as determined through bench-top testing of the full
system, not just the accelerometer sensor.
Software system tests should indicate that the entire system

including software that generates the sample-level data are
functioning as intended, even under unusual circumstances of
use. The results of the system tests do not need to be described in
exhaustive detail in the documentation; instead, a high-level
description of the software system tests should be included for
general knowledge. For the step counter, this could include
testing to ensure that the current step count is always displayed
on the screen and is incremented within 1 s of a step being
detected. An unusual situation would be to test what happens
when the number of steps is so great that the size of the displayed
digits exceeds the size of the screen (e.g., 100,000 steps per day or
more). Other system tests could include what happens when the
software detects an error within the system, such as a sensor
malfunction.
Overall, the verification documentation for a BioMeT should

give the clinical user enough information to use the BioMeT
exactly as it was designed.

Table 2. Summary of verification.

Who? Engineers, data & computer scientists

What? Generation and preliminary processing of sample-level data

When? Prior to testing the technology in human subjects

Where? At the bench

Why? To evaluate the performance of a sensor technology (1)
against pre-specified criteria and (2) to demonstrate that the
sample-level data generated is correct within the limits of the
pre-specified conditions.
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WHAT IS THE REGULATORY OVERSIGHT OF VERIFICATION?
Regulation of verification testing in medical devices is currently
overseen by the FDA in the US and the various Notified Bodies
that conduct conformity assessments for CE marking in the EU22.
These entities require specific verification testing before a medical
device can receive clearance or approval. However, many BioMeTs
are not required to go through the regulatory clearance/approval
process, so independent verification standards for BioMeTs need
to be developed.
There is a need for “verification standards” for BioMeTs that

parallels the quality standards used to evaluate components of
pharmaceuticals. In drug development, the United States Phar-
macopeia23 is a non-profit organization that develops public
guidelines for drug quality in collaboration with regulatory
agencies, industry partners, and academia. An analogous organi-
zation for BioMeTs would be responsible for creating and
updating guidelines and standards for verification testing. At
present, there are multiple working groups within larger
organizations that are focused on developing these verification
standards for specific subsets of BioMeTs. Two examples of these
working groups are the IEEE-WAMIII (Wearables and Medical IOT
Interoperability & Intelligence) and the Consumer Technology
Association’s Health and Fitness Technology Division. Such groups
should collaborate to develop unified standards for verification
that can be used by the regulatory bodies for oversight.
Table 3 describes the application of verification in practice.

ANALYTICAL VALIDATION
Analytical validation involves evaluation of a BioMeT for generat-
ing physiological- and behavioral metrics. This involves evaluation
of the processed data and requires testing with human subjects24.
After verified sample-level data have been generated by a BioMeT,
algorithms are applied to these data in order to create
behaviorally or physiologically meaningful metrics, such as
estimated sleep time, oxygen saturation, heart rate variability, or
gait velocity.
This process begins at the point at which verified output data

(sample-level data), becomes the data input for algorithmic
processing. Therefore, the first step of analytical validation
requires a defined data capture protocol and a specified test
subject population. For example, to develop an algorithm for gait
velocity using data captured from a verified inertial measurement
unit (IMU), it is necessary to specify (1) where the technology is
worn (e.g., on the waist at the lumbar spine, ankle, or dominant
wrist) and the orientation of the sensor, and (2) the study
participant population (e.g., healthy adults aged 18–64, or patients
with a diagnosis of multiple sclerosis aged 5–18)25,26. In this
example, the analytical validation consists of evaluating the
performance of the gait velocity algorithm on verified IMU data
captured in accordance with the specific study protocol and in the
particular study population of healthy adults aged 18–64.
During the process of analytical validation, the metric produced

by the algorithm must be evaluated against an appropriate

reference standard. Sleep onset/wake, for example, should be
validated against polysomnography; oxygen saturation against
arterial blood samples; heart rate variability against electrocardio-
graphy; and biomechanics such as gait dynamics against motion
capture systems. It is important to remember that there can be
multiple reference standards for a single metric, and not all
reference standards are based on sensors. For example, a
commonly used reference standard for respiratory rate is a
manual measurement: a nurse observes and counts a study
participant’s chest raises over a defined period of time. Manual
reference standards are necessary when it is infeasible or
impractical to use a sensor-based standard; step counts, for
example, are typically validated using manual step counting rather
than an instrumented walkway or instrumented shoes because it
is more practical to have a human observer manually count the
subject’s steps during a long walk test. In general, however,
manual measurements are not the best choice for reference
standards as they are the most prone to user error; they should
only be used when absolutely necessary and no other reference
standards are suitable and/or feasible.
It would be counterproductive to recommend a single thresh-

old of accuracy for analytical validation of a BioMeT metric versus
a reference standard as not all reference standards are of equal
quality. First, not all reference standards are completely objective.
For example, polysomnography signals are collected via sensors
but may be manually scored by a trained technologist to generate
sleep variables. Second, ostensibly objective reference standards
like optical motion capture systems may have substantial operator
bias that increases the variability of the final measurements27.
Finally, in some cases a “gold standard” reference standard may
not be clearly defined. For example, Godfrey et al. noted that the
validation process for metrics produced by a gait algorithm based
on body worn inertial sensors compared with a traditional
laboratory reference standard, an instrumented pressure sensor
gait mat, revealed poor agreement for variability and asymmetry
estimates of left/right step data. In this case, a gait mat is a poor
choice of reference standard to evaluate body worn sensors due
to fundamental differences in measurement methods between
the pressure and inertial sensor modalities28. Therefore, we
recommend caution in the choice of reference standards for
analytical validation studies. Most importantly, it is critical to
understand how the selected reference standard measures and
interprets the desired metric in order to undertake appropriate
analytical validation procedures.
Best practices should be followed when choosing a reference

standard for analytical validation of a BioMeT. The most rigorous
and quantitative reference standards should be agreed upon and
documented by guidance documents and consensus statements
from governance and professional organizations. These are the
reference standards that should be selected in order to avoid poor
methodological approaches. Low-quality reference standards have
the potential to introduce error as they may only produce an
estimate of the desired metric. For example, a sleep diary contains
the subject’s recollection of their sleep onset/wake time, which

Table 3. Verification in practice.

Documentation you can expect Manufacturer should provide evidence of their BioMeT’s:
• Performance specifications for the integrated hardware
•Output data specifications
•Overview of software system tests
• Limitations to the verification testing
• e.g., specific known items that were not tested during verification

Clinical users’ questions answered by
verification

Is the performance of this BioMeT and each of its components sufficient to generate sample-level data
of acceptable quality such that it can be used as an input to generate the processed data and
downstream clinical measurement that I am interested in?
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might vary considerably from the actual sleep onset/wake.
Similarly, the process of back-validation, where analytical valida-
tion of a next generation BioMeT is evaluated against the previous
generation, will also introduce error that can quickly compound if
this process is repeated over multiple generations.
Table 4 summarizes the process of analytical validation.

HOW CAN WE RECONCILE ANALYTICAL VALIDATION OF
BIOMET-GENERATED MEASURES IN DIGITAL MEDICINE WITH
MORE FAMILIAR APPROACHES FROM OTHER DISCIPLINES?
BioMeTs come in a wide variety of form factors and levels of
complexity. Despite this variation, the goals and challenges of
generating evidence of analytical validity are common across
many tools and are similar to those of non-digital tools. For
example, both assessing the analytical validity of heart rate
variability (HRV) from a commercial chest strap and gait velocity
from a wrist-worn accelerometer require the use of reference
standards, testing protocols, and statistical analyses that are
widely accepted by subject matter experts. These elements have
been a part of analytical validation within engineering and health-
related disciplines for many years. However, questions of their
relevance to BioMeTs of ever-increasing novelty can arise,
particularly when the reference standards, testing protocols, and
statistical analyses are poorly defined, non- intuitive, or are not
disclosed at all.
In some instances, a BioMeT may be attempting to replace a

less-robust clinical measurement tool that provides only measure-
ment estimates (i.e., patient diaries). When it is not possible to
robustly establish analytical validation due to the novelty of the
data type generated from a BioMeT (i.e., no reference standard
exists), then the need for evidence of clinical validity and utility
increases. In contrast, the primary element required to demon-
strate clinical validity (discussed below) is a reproducible
association with a clinical outcome of interest. Methodological
approaches to establishing associations are diverse and the most
appropriate methods are dependent on the target population and
context of clinical care.

WHO IS RESPONSIBLE FOR ANALYTICAL VALIDATION?
Analytical validation focuses on the performance of the algorithm
and its ability to measure, detect, or predict the presence or
absence of a phenotype or health state and must involve
assessment of the BioMeT on human participants. As such, the
entity that is developing the algorithm is responsible for analytical
validation. Ideally, analytical validation would benefit from
collaboration between the engineering team responsible for
developing the sensor technology, data scientists/analysts/statis-
ticians, physiologists or behavioral scientists, and the clinical

teams responsible for testing in human participants from which
the data are captured and the algorithm is derived. These multi-
disciplinary teams might all sit within a single organization or may
be split between a technology manufacturer and an analytics
company, academic organization, and/or medical product
manufacturer.
Commercial technology manufacturers often focus on devel-

oping generic algorithms with broad applications to a wide variety
of subject populations in order to market their products to the
widest possible consumer base. These algorithms (step count,
walking speed, heart rate and heart rate variability, falls, sleep,
muscle activation, etc.) could be applied to subjects with a variety
of health conditions and under a variety of circumstances.
However, commercial technology manufacturers may only con-
duct analytical validation for their algorithms using a small cohort
of healthy subjects in a controlled laboratory setting. The
manufacturer may or may not document the results of these
studies in order to demonstrate the analytical validation of all the
algorithms in their product. Sponsors of new medical products
(drugs, biologics, or devices) choosing to use commercial
technology will typically need to conduct their own analytical
(and then clinical) validation.
When sponsors of new medical products (drugs, biologics, or

devices) want to use BioMeTs to assess safety or efficacy of a new
medical product for regulatory approval, they necessarily focus on
developing specific algorithms with narrow applications that are
targeted to their exact patient population of interest (e.g.,
Parkinson’s disease, multiple sclerosis, Duchenne’s muscular
dystrophy). Through their clinical trial populations, sponsors
generally have access to large data sets of patients with the
specific health condition of interest from which to develop their
algorithms. The trial sponsors may include a BioMeT prospectively
as an exploratory measure in a clinical trial (both early and late
stage) and use the collected data to develop the algorithm. There
may be no available reference standards for these targeted
algorithms; as a result, the sponsor may use other data collected
during the clinical trial as the surrogate reference standards for the
algorithms.
The sponsor should thoroughly document the analytical

validation of the algorithms and is required to submit these
results to regulatory bodies such as FDA or EMA. However, owing
to the sensitivity of data collected during a clinical trial, these
results may never be published or may be published years after
the clinical trial has concluded. To demonstrate the efficacy of the
BioMeT, we recommend that sponsors publish the results of
analytical validation as soon as possible.
Table 5 describes the application of analytical validation in

practice.

CLINICAL VALIDATION
Clinical validation is the process that evaluates whether the
BioMeT acceptably identifies, measures, or predicts a meaningful
clinical, biological, physical, functional state, or experience in the
specified context of use. An understanding of what level of
accuracy, precision, and reliability is necessary for a tool to be
useful in a specific clinical research setting is necessary to
meaningfully interpret results.
Clinical validation is intended to take a measurement that has

undergone verification and analytical validation steps and
evaluate whether it can answer a specific clinical question. This
may involve assessment or prognosis of a certain clinical
condition. Clinical validation should always be tailored to a
specific context of use. The goal of clinical validation is to evaluate
the association between a BioMeT-derived measurement and a
clinical condition. The process of clinical validation also ensures
the absence of systemic biases and can uncover BioMeT
limitations such as an improper dynamic range to address a

Box 2: Reality check—analytical validation in practice

The process of conducting analytical validation as we describe it here is not
always what happens in practice. Often algorithms are developed by technology
manufacturers, are considered proprietary, and are not disclosed for testing.
Sponsors of new medical products who want to use one of these tools to
evaluate the safety or efficacy of a new product may therefore not have access to
the algorithms. However, access to the algorithm itself is not necessary for the
purposes of analytical validation, as long as the investigator is able to access the
input data (sample-level data or processed data, depending on the algorithm)
along with the software containing the algorithm in order to generate the
endpoint/s of interest. Regardless of which party performs analytical validation,
sponsors opting to use a particular BioMeT are responsible for their trial data
integrity and communicating documentation of all stages of the V3 processes to
regulators. Where IP issues prohibit sponsors from completing analytical
validation independently, they must have means to assess analytical validation
of the tools upon which their trial success depends.
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particular question. For example, a clinical validation could be
determined in a study assessing the relationship between
ambulatory BP monitoring and all-cause and cardiovascular
mortality29.
Developing a standardized framework for clinical validation is

challenging because of the highly variable nature of questions
asked of clinical validation studies. However, we can adapt
solutions from the FDA Guidance on patient reported outcomes30

or the CTTI recommendations and resources for novel endpoint
development31. Some of the concepts such as defining mean-
ingful change to interpret treatment response and ability to detect
clinically meaningful change could be leveraged more extensively
for the purposes of clinical validation for BioMeTs.

Clinical experts, regulators, and psychometricians who are
experienced with the development of clinical measurement tools
are intimately familiar with the process of clinical validation. The
work that these experts do, does not change when the tool is
digital.
Table 6 summarizes the process of clinical validation.

HOW CAN WE RECONCILE CLINICAL VALIDATION OF SENSOR-
GENERATED MEASURES IN DIGITAL MEDICINE WITH MORE
FAMILIAR APPROACHES FROM OTHER DISCIPLINES?
Clinical validation is a process that is largely unique to the
development of tests, tools, or measurements either as medical
products themselves, or to support safety and/or efficacy claims
during the development of new medical products, or new
applications of existing medical products. Technology manufac-
turers who are not yet experienced in the clinical field may be
unfamiliar with this final step in the development of a BioMeT.
Equally, clinical experts with significant experience developing
traditional clinical tests, tools, and measurement instruments may
not realize that this process does not vary when developing and
evaluating a BioMeT.

WHO IS RESPONSIBLE FOR CLINICAL VALIDATION?
Clinical validation is conducted by clinical teams planning to use,
or promote the use of, the BioMeT in a certain patient population
for a specific purpose. In practice, sponsors of new medical
products (drugs, biologics, or devices) or clinical researchers will
be the primary entities conducting clinical validation. If the digital
tool is being used to support a labeling claim in the development
of a new medical product, or a new application of an existing
medical product, then the sponsor of the necessary clinical trials

Table 4. Summary of analytical validation.

Who? Engineers, data scientists/analysts/statisticians, physiologists, behavioral scientists, and clinical researchers

What? Protocol for data capture from a human participant.
Algorithms applied to sample-level data to yield measurements that are indicative of clinical concepts.

When? First use in human subjects.

Where? Research or clinical laboratories.

Why? To evaluate the performance of the algorithm, and its ability to measure, detect, or predict physiological or behavioral metrics.

Table 5. Analytic validation in practice.

Documentation you can expect Description of analytical validation studies conducted according to the requirements of Good
Clinical Practice (GCP). This description can be in any one or more of the following forms:
• Internal documentation
• Regulatory submission (510 k)
•White paper
• Published journal article
In the documentation, the evidence for every algorithmic output in their system:
•Description of the output metric
•Overview of how the metric was calculated, including specific details where possible
•Which reference standard was used as the comparator to validate the metric
• Results from a direct comparison between calculated metric and reference standard, including
statistical analysis methods
•Description of the human subjects population and experimental conditions and protocol used in
the aforementioned direct comparison testing
If this validation testing was undertaken as part of a clinical trial with human subjects, then the
Institutional Review Boards (IRBs) or Ethics Committees (ECs) documentation should also be
provided.

Clinical users’ questions answered by analytical
validation

Can an algorithm acceptably measure, detect, or predict the presence or absence of a phenotype
or clinical condition when that algorithm is applied to sample-level data captured by a verified
sensor in accordance with a specific data collection protocol in a particular population?

Box 3: Sample-level and processed data

Sample-level data are used as input to algorithms that convert that data to a
second type of reported data that is not a direct representation of the original
analog signal. We refer to this data as processed data because it is the result of
processing operations applied to the original sample-level data. For example,
‘heart rate’ and ‘step count per minute’ are two processed data types that can be
obtained from sample-level data (e.g., 250 Hz ECG or 50 Hz accelerometer,
respectively).
In both cases, the processed data are not a direct representation of the original
analog signal measured by the sensor; instead, an algorithm was applied to
produce the new type of data. These processed data are almost always available
to third parties and exists at a lower frequency than the sample-level data. In the
case of sensor technologies that restrict access to the sample-level data, this
processed data are the first-accessible data set from the device.
The distinction between sample-level and processed data are important because
the evaluation processes differ. Following the V3 framework, sample-level data
should be evaluated at the verification stage, and processed data should be
evaluated at the analytical validation stage. This difference in evaluation
processes is owing to the fact that the processed data have been manipulated
from its original form.
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will be required to conduct clinical validation of any BioMeTs they
use to make labeling claims.
In circumstances where the sponsor has completed analytical

validation of an algorithm for a specific and narrow patient
population, it may be possible to reuse some of the patient data
that informed analytical validation to complete clinical validation.
Clinical trials (both early and late stage) generate large data sets of
patient health data that have traditionally been used to
demonstrate clinical validity of biomarkers or surrogate end-
points5. This same process still applies when evaluating BioMeTs.
We recommend using caution to avoid overestimating the utility
of a digital endpoint if the same data set is used for both analytical
and clinical validation. Documentation of clinical validation for
BioMeTs should follow the same processes and requirements of
clinical validation of traditional tests, tools, and measurement
instruments32.
Table 7 describes the application of clinical validation in

practice.

WHAT IS THE REGULATORY OVERSIGHT OF THE ANALYTICAL
AND CLINICAL VALIDATION PROCESSES?
The pathways for regulatory oversight of the validation processes
will vary with the claims that the manufacturer of the BioMeT
makes. For BioMeTs on regulatory pathways that require clearance
or approval as a medical device, the centers within regulatory
bodies responsible for these devices have regulatory oversight.
These pathways are described in detail in Digital Medicine: A
Primer on Measurement3.
For BioMeTs being used to support safety and efficacy claims of

other medical products, there are a number of different options. In
the United States, there is a pathway to “qualify” a digital tool
outside of an individual drug development program32. Other
pathways are specific to the medical product of interest. Decisions
about the best approach to developing and/or a BioMeT in clinical
trials and the preferred approaches for analytical validation should
be made with input from regulatory agencies. CTTI has developed

a quick reference guide to engage with the FDA for these
conversations33.

REAL-WORLD EXAMPLES OF V3 PROCESSES
Table 8 describes the application of V3 processes for five use
cases, including both commercial and medical BioMeTs.

THE V3 FRAMEWORK IN PRACTICE
There are a number of considerations that transcend the
processes of verification and analytical validation, and clinical
validation in the development of BioMeTs.

DO THESE PROCESSES REPLACE EXISTING GXP PROCESSES?
No. Good ‘x’ practices (or GxP) are guidelines that apply to a
particular field. For example, ‘x’ may be manufacturing (GMP) or
laboratory (GLP). Good practice guidelines apply to products in
regulated fields (e.g., pharmaceuticals and medical devices) and
are intended to ensure that these products are safe and meet their
intended use by complying with strict quality standards through-
out the entire process of production. V3 processes should be
applied to all BioMeTs used in digital medicine. Digital tools that
are also cleared or approved as medical devices must also comply
with applicable GxP guidelines.

EMPHASIZING THE IMPORTANCE OF A STUDY PROTOCOL
DURING V3 EVALUATION
It is important to develop clear study protocols and reports prior
to embarking on V3 exercises. For verification, documentation
should stipulate the requirements/acceptance criteria, testing
steps, procedures, timelines, and documentation of the experi-
mental results with appropriate conclusions. Both analytical
validation and clinical validation processes are subject to
regulations applicable to human experimentation. Clinical study

Table 6. Summary of clinical validation.

Who? Clinical teams planning to use and generate scientific evidence based on the BioMeT in a stated context of use (which includes specifying
the patient population).

What? Well-designed clinical study protocols with appropriate inclusion/exclusion criteria, measurements, and outcomes to ensure assessment of
content validity.

When? After both verification of the data generated by the BioMeT and analytical validation of the data collection protocol and data processing by
software algorithms is complete.

Where? In the environment where the digital tool will be used. This will likely include data captured outside of the clinical or research laboratory
environment during participants’ activities of daily living.

Why? To evaluate whether the BioMeT acceptably identifies, measures, or predicts a meaningful clinical, biological, physical, functional state, or
experience in the specified (1) population and (2) context of use.

Table 7. Clinical validation in practice.

Documentation you can expect Documentation of studies should include one or more of:
• Clinical study report (CSR)
• Regulatory submission (FDA or EMA)
•White paper
• Published conference proceeding
• Published journal article
Protocols and study reports should also be made publicly available.
The Institutional Review Boards (IRBs) or Ethics Committees (ECs) documentation for the study should also
be provided.

Questions answered by clinical validation Can a BioMeT-derived measurement that has undergone verification and analytical validation steps be
used to answer a specific clinical question?
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protocols are required with an approval of IRB/EC and regulatory
agencies, as applicable.
For all V3 processes, keeping appropriate test/study protocols

and reporting the results is critical as it serves multiple purposes:
defining the objectives of the experiment, aligning all stake-
holders involved, complying with applicable regulations, and
providing tools for determining compliance. In addition, protocols
and study reports are key tools for documenting scientific
evidence needed to draw inferences on whether a technology is
fit-for-purpose for the intended use and context of use.

CONSIDERING UPGRADES TO FIRMWARE AND/OR SOFTWARE
The requirements for V3 are determined by the intended use of
the BioMeT. Therefore, if the hardware or software are changed,

new verification and/or analytical validation studies are needed to
provide updated documentation for the end user (e.g., the study
sponsor using the BioMeT as a drug development tool).
Fortunately, changes in hardware and firmware often have no
negative effects on the sample-level data, but the manufacturer
still needs to demonstrate that this is true and also whether there
is a “backwards compatibility” with earlier models. This is
important because if an engineering improvement in BioMeT
firmware or hardware makes the new data incompatible with data
collected from earlier versions, this “improvement” could be
disastrous for longitudinal studies and meta analyses.
Software updates that include changes to the algorithm

processing the sample-level data require analytical validation to
be repeated. However, if the hardware and firmware are

Table 8. Questions that verification, analytic validation, and clinical validation answer in example use cases.

Example use cases Questions VERIFICATION answer: Questions ANALYTICAL VALIDATION
answer:

Questions CLINICAL VALIDATION
answer:

Heart rate variability
(HRV) from a commercial
chest strap

Is the raw data from the ECG sensor on
the commercial chest strap accurate,
precise, and consistent?
Are the processed RR intervals from the
ECG sensor and post-processing on-
board algorithms accurate with low
errors45?

Does the HRV measured from the
commercial chest strap ECG sensor
provide clinical-grade accuracy of HRV
(compared with a traditional ECG and
Kubios clinical-grade software45?)
Does HRV from the commercial chest
strap meet standards set by the HRV
Task Force46?
Does HRV analysis meet the needs of
users using the commercial chest strap
(high accuracy under daily activities and
during movement)47?

Can heart rate variability identify the
presence of autism spectrum disorder
in 8-year-old children48?

Gait speed from a
commercial
accelerometer

Is the accelerometer sensor accurate
and precise within predetermined
uncertainty?
Is the accelerometer sensor raw data
uniform and consistent?

Do the accelerometer sensor and
processing algorithms provide clinical-
grade accuracy of gait speed (compared
to clinical automatic timing system
used for gait speed analysis49 under the
specific use case the device was
developed for)50?

Can gait speed predict the onset of
dementia in older adult patients51?

Arrhythmia detection Is the heart rate sensor (optical heart
rate or ECG) accurate, precise, and
consistent?
Does the post-processing algorithm for
arrhythmia detection provide high
sensitivity and specificity with low
errors?

Does the arrhythmia detector (sensor
and algorithms) meet the standards set
by the FDA Class II Special Controls
Guidance Document: arrhythmia
detector and Alarm52? Does the
arrhythmia detector provide
information consistent with clinical
review of ECG53?

Does the product acceptably detect
atrial fibrillation (AF) in adults?

Closed-loop continuous
glucose monitor (CGM)/
glucose pump systems

Is the CGM sensor accurate, precise,
and consistent with low errors?
Is the pump system accurate, precise,
and consistent with low errors?
Does the closed-loop feedback
algorithm provide timely, accurate
feedback from the CGM to the pump
consistent with FDA Considerations for
Closed-Loop Controlled Medical
Devices54?

Does the closed-loop CGM/pump
system provide similar accuracy when
compared with the current standard
(system with multiple devices and
manual calibration throughout the
day?55)
Do the closed-loop system components
(CGM, pump, and feedback algorithm)
meet specifications set by the FDA
Regulatory Considerations for
Physiological Closed-Loop Controlled
Medical Devices Used for Automated
Critical Care54?

Does this hybrid closed-loop system
acceptably monitor glucose and
automatically adjust the delivery of
long acting or basal insulin based on
the user’s glucose reading in the pre-
specified context of use and patient
population56?

Cuffless blood pressure
(CBP) monitoring

Is the sensor used for CBP monitoring
accurate, precise, and consistent with
low errors?
Is the algorithm used for determining
BP accurate, precise, and consistent
with low errors?

Does CBP monitoring provide clinical-
grade accuracy (when compared to a
traditional cuff BP monitor)57?
Does the CBP device meet the
standards for wearable devices issued
by the Institute of Electrical and
Electronics Engineers (IEEE
1708–201457,58) and AAMIA Advancing
Safety in Health Technology (ANSI/
AAMI/ISO 81060-2:2013)59?

Do parameters of in-clinic blood
pressure monitoring still apply to
ambulatory/remotely captured blood
pressure when considering the use of
blood pressure as a prognostic
biomarker for cardiovascular
outcomes29?
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unchanged, it is not necessary to repeat verification and analytical
validation can be conducted using pre-existing sample-level data.
There can be misperceptions of the implications of firmware

and software updates, such as whether or not those trigger new
reviews from regulators like the FDA. For instance, software
manufacturers are able—and encouraged by the FDA—to patch
known security vulnerabilities34. Notably, software manufacturers,
and not the FDA, are responsible for 640 validation of software
changes after the patch has been deployed34.

EXTENDING BIOMETS TO NEW POPULATIONS
If the BioMeT itself has not changed, it is not necessary to repeat
existing verification studies. However, whether existing validation
data can be generalized to a different patient population or
clinical setting is also a matter for scientific judgment and may
require additional analytical validation and clinical validation
studies. For example, consider an algorithm that processes data
from a hip-worn accelerometer to generate the number of steps
per day that was originally developed using data collected from
healthy college athletes. There may be published data demon-
strating that the algorithm performs well when tested on similar
populations, such as people who are slightly older or those who
are generally fit and active. However, it is unlikely, that the
algorithm will generate an accurate step count if applied to a
person suffering from peripheral neuropathy or a gait disorder.
Thus, it would be incorrect to assume that just because analytical
validation testing has demonstrated good performance in one
scenario that the algorithm is then validated for use in all
scenarios.

EXTENDING V3 CONCEPTS TO MULTIMODAL AND COMPOSITE
DIGITAL MEASURES
V3 processes extend to multimodal data and composite digital
measures. Multimodal describes data captured from two or more
unique measurement methods. For example, a combination of
accelerometer and gyroscope data can be used to detect falls and
sit-to-stand transitions35,36. Digital tools relying on multimodal
data should have evidence of verification available for each
sensor, and evidence of analytical validation and clinical validation
for the measure itself. Composite digital measures combine
several individual measures, often derived from different sensors,
to reach a single interpretive readout. For example, combining
digital assessments of heart rate, sleep and heart rate variability
can render a composite measure of depression37. Another
example may combine accelerometer, GPS, keyboard and voice
data from a smartphone to give a composite measure of
cognition38. In these cases, verification of all contributing sensors
is required along with validation of both the individual measures
and the combined composite measure.

HOW MUCH VALIDATION IS “ENOUGH”?
It can be difficult to decide whether an analytical validation study
has achieved its goal of determining that an algorithm correctly
captures the behavioral or physiological measure of interest. If
there is a clear and objective reference standard, then a numerical
accuracy threshold can be set a priori, and the algorithm can be
said to be sufficiently well validated if the results of the testing
meet or exceed the threshold. A numerical accuracy threshold
should be chosen based on the expected accuracy of the
reference standard combined with a literature review of relevant
research and comparable validation studies that indicate what
would be clinically meaningful accuracy. For example, heart rate
has a clear reference standard (multi-lead ECG) and there are
many published analytic validation studies describing the
accuracy of various heart rate measurement devices39.

When evaluating a novel metric where there is no clear
reference standard, analytical validation becomes a more challen-
ging task. In such cases, the first step is to determine what level of
accuracy is necessary to be clinically meaningful in the expected
user population. This can be determined by a literature review of
previously published research combined with consultations of key
opinion leaders in the field. Once an approximate accuracy
threshold has been established, the best available reference
standard should be chosen. The reference standard is often the
measurement method used in clinical practice, and should be
chosen based on the literature and in consultation with key
opinion leaders. Then the analytical validation study can be
completed. It is noteworthy that the absence of a clear reference
standard necessarily requires the integration of elements of
analytical and clinical validation to appropriately evaluate the
measure. An example of this type of study is the measurement of
tremor in patients with Parkinson’s disease. Tremor is usually
assessed by visual observation of the patient, which is not a clear
reference standard. In one study, a BioMeT’s measurement of
Percent of Time that Tremor is Present in Parkinson’s patients was
assessed against visual observation to generate an accuracy
score40.
In general, it is not possible to set a blanket threshold for all

types of statistical assessments of clinical validation, as these will
differ depending on the clinical measurement, patient population,
and context of use. For example, a BioMeT that is highly sensitive
to detecting a disease may be valuable for the purposes of
screening owing to the low false-negative rate, whereas a BioMeT
that is highly specific may be of value for the purpose of diagnosis
owing to the low false-positive rate. Second, determining that the
endpoint generated by the BioMeT is clinically valid and of
importance to understanding the functional status or quality of
life of the target population is critical. This process relies on
examining the totality of evidence related to the endpoint in
question, and using that information to make a scientific
judgment as to whether the endpoint is an appropriate
measurement or diagnostic marker. For clinical validation, the
best practice would be to publish all available testing and results
(including the protocols), which will allow future users to choose
the most appropriate BioMeT for their specific purpose (fit for
purpose).
Figure 3 summarizes the application of the V3 process in the

real world.

STATISTICAL CONSIDERATIONS IN V3
Error can stem from a wide array of sources when employing
BioMeTs. The development and implementation of a robust V3
protocol and subsequent BioMeT deployment and use in
accordance with that V3 protocol will minimize error resulting
from differences between expected and actual accuracy as well as
intended and actual use. There are a wide range of statistical
analyses used to evaluate BioMeTs for their coherence with
reference standards and their clinical power, which is beyond the
scope of this paper. Provision of raw data, whenever possible,
helps to address transparency and independent evaluation of
technologies by allowing independent investigation of, for
example, data variance and its impact on BioMeT reliability. In
addition, it is important to consider the limits of agreement if
using different devices to quantify the same biomarker at different
timepoints or in different cohorts.

FUTURE DIRECTIONS
Digital medicine is an interdisciplinary field, drawing together
stakeholders with expertize in engineering, manufacturing, clinical
science, data science, biostatistics, regulatory science, ethics,
patient advocacy, and healthcare policy, to name a few. Although

J.C. Goldsack et al.

12

npj Digital Medicine (2020)    55 Scripps Research Translational Institute



this diversity is undoubtedly valuable, it can lead to confusion
regarding terminology and best practices in this nascent field.
There are many instances, as we detail in this paper, where a
single term is used by different groups to mean different things, as
well as cases where multiple terms are used to describe what is
essentially the same concept. Our intent is to clarify the core
terminology and best practices for the evaluation of BioMeTs for
use in clinical trials of new medical products, without unnecessa-
rily introducing new terms. We aim for this common vocabulary to
enable more effective communication and collaboration while
improving the accessibility of the field to new adopters.
Figure 4 summarizes the role of the different disciplinary

experts in the V3 process.
V3 processes for traditional medical devices are generally well

established but BioMeTs introduce new considerations41. For
instance, SaMDs do not rely on specific hardware or sensors. The
process of verification enables the use of SaMDs on verified data
from any suitable sensor technology. In addition, some vendors
sell “black box” algorithms or combined sensor/algorithm pairings.
Establishing clear definitions and evidentiary expectations for the
V3 processes will support collaborators seeking to evaluate the
output of a “black box” sensor technology and/or measurement
tool. Although the focus of this manuscript is on the use of

BioMeTs in regulated trials of new medical products, our intent is
for this framework to be instructional to all users of digital
measurement tools, regardless of setting or intended use.
Informing treatment decisions or care management based on a
digital measure should not be subject to different scrutiny. Our
goal in advancing this unifying V3 evaluation framework is to
standardize the way high-quality digital measures of health are
developed and implemented broadly. Evidence to support a
determination of ‘fit-for-purpose’ and build trust in a digital
measure should be uniform. A lack of V3 evaluation will have
severe consequences (see Table 9 for illustrative examples) if
algorithms fail to run according to predetermined specifications or
if BioMeTs fail to perform according to their intended purpose.
Adopting streamlined methods for transparent reporting of V3

methodologies could lead to more ubiquitous deployment of low-
cost technologies to better assess and monitor people outside of
the clinic setting. This in turn can help healthcare professionals
better diagnose, treat, and manage their patients, whereas
promoting individualized approaches to medicine. Transparency
will overcome “black box” technology development and evalua-
tion approaches, ensuring that BioMeTs are used appropriately
with the robust capture of data regardless of environment and
context.

Fig. 3 V3 in practice: The verification, analytical validation, and clinical validation process in the real world. The V3 process in practice.

Fig. 4 The role of the different disciplinary experts in the V3 process: Verification, analytical validation, and clinical validation processes
are typically conducted by experts across disciplines and domains. V3 processes are typically conducted by experts across disciplines and
domain.
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The proposed V3 process for BioMeTs describes an evidence
base to drive the appropriate adoption of fit-for-purpose digital
measurement technologies. In this document, we propose this
three-pronged framework using historic and current contexts to
define the key terms in this process. As a next step, we strongly
encourage a re-initiation of the FDA B.E.S.T. working group to
consider these definitions, refine them, and add them to the
working compendium BEST framework42. We also encourage
groups like the IEEE to consider these ontologies and provide
feedback and guidance on the next steps required to adopt a
common language and model for digital tools. We also recognize
that technological developments will move faster than any
regulatory or standards body can keep up with, so we encourage
the practitioners in the digital era of medicine, including data
scientists, engineers, clinicians and more, to continue to build
upon this work. Professional societies like The Digital Medicine
Society (DiMe) aim to become a collaborative hub for innovation
in this area. Our hope is that the V3 framework and definitions
continue to evolve to reflect the technologies that they serve. Our
team will aim for annual updates to the framework as it exists
herein. Once a common BioMeT evaluation paradigm is agreed
upon, we will be able to develop technologies deserving of the
trust we place in them (Boxes 1–3).
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