Ontology of measures of postural sway

Access more resources: DATAcc's Core Measures of Physical Activity
Ontology of measures of postural sway

Definition
Movement or oscillations away from a "desired body position," which prevent an individual from "maintaining this position in any static or dynamic situation."

Concepts
- Postural sway
 - Posture
 - Spatial properties of sway
 - Displacement
 - Area
 - Direction
 - Spatiotemporal properties of sway
 - Velocity
 - Acceleration
 - Jerk
 - Temporal properties of sway
 - Frequency
 - Individual-specific Variables
 - Environmental Variables
 - Context-of-use Dependent
 - Measurement Modality

Properties
- Center of Mass
- Base of Support
- Static Postures
- Dynamic Movement
- Displacement
- Area
- Direction
- Velocity
- Acceleration
- Jerk
- Frequency
- Individual-specific Variables
- Environmental Variables
- Context-of-use Dependent
- Measurement Modality

Values (or nested properties)
- Meters (center of mass is usually a reference point for other measurements)
- Meters^2, centimeters^2 (area); meters, centimeters (distance); degrees (angle)
- Standing, sitting, tandem, single leg, Romberg
- Meters^2, centimeters^2
- Anterior/posterior, medial/lateral, degrees (angle)
- Meters/second, centimeters/second, millimeters/second
- Meters/s^2, centimeters/s^2, millimeters/s^2
- Meters^2/second^5
- Height, age, body mass index (BMI), gender/sex, age, use of walking aid, etc.
- Surface of walking, location, indoor vs. outdoor and transitions, weather, etc.
- Baseline health status, condition or therapeutic area (if relevant); typical comorbidities, visual/auditory/vestibular/lower body sensory impairment
- Technology type and model; sensors (e.g., accelerometer, gyroscope, pressure); duration of measurement and time of day (clock time); wear location (if wearable); evaluation algorithm; form factor

Examples
- Documentation of foot position may include distance between anatomical landmarks, footprint borders, and foot opening or progression angle
- Statistics: Distance/excursion, path length, range/amplitude
- Statistics: Mean area, 95% ellipse
- Statistics: Peak velocity, mean velocity
- Statistics: Root-mean-square (RMS), range
- Statistics: Power, dispersion

Documentation
Accelerometers calculate velocity by taking the integral of acceleration signals. Force plates calculate acceleration by dividing force by mass of the subject.
Postural sway

Postural sway represents the meaningful aspect of health, “balance-dependent activities,” which has been shown to be clinically relevant for various therapeutic areas. However, whereas other measures in the core set have been frequently measured using digital sensor technologies, further development in defining measures of postural sway is needed. To fill this gap, we have conducted a search of the literature to define ontologies for measures of postural sway, to further promote innovation and adoption of postural sway measures.

Measure considerations (assumptions & limitations):

- The center of mass (COM) is the average position in 3D space of all body segment positions according to their specific masses.
 - In humans, the COM is often located at the navel, lumbar ~L3-L5.
- Balance is defined as the ability to maintain center of mass (COM) over base of support (BOS).
 - Contact area based on pose: standing = feet, sitting = buttocks/thighs; borders define edge limit for loss of balance/falls.
- For assessment of postural sway during dynamic movements, such as walking:
 - The minimum number of steps and days’ worth of data should be captured to estimate sway at the slice in time.
 - May need to assume the walking aid is used consistently for all bouts.
- May need to account for whether a particular side of body detects more sway (or both sides).
- Postural sway is traditionally measured using force plates in lab settings, but there is potential for further development in technologies (e.g., inertial measurement units, insoles, etc.) capable of capturing measures of postural sway more accurately.